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A general method for the calculation of the partition function of a canonical ensemble of noninteracting
bound electrons is presented. It consists in a doubly recursive procedure with respect to the number of electrons
and the number of orbitals. Contrary to existing approaches, this recursion relation contains no alternate
summation of positive and negative numbers, which was the main source of numerical uncertainties. It is
accompanied with a normalization of partition function through the determination of a free parameter consis-
tent with the zeroth-order saddle-point approximation. The recursion relation allows one to calculate accurately
partition functions for ions with a large number of orbitals, and is therefore important for calculations relying
on the superconfiguration approximation.
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I. INTRODUCTION

In hot and dense plasmas of intermediate or high-Z ele-
ment, atomic-physics calculations using a detailed-
configuration-accounting method may become computation-
ally prohibitive due to the huge number of configurations to
be taken into account. The supertransition-array(STA)
method is a rather powerful approach[1] that permits to
model these situations in a statistical framework by gathering
the numerous configurations into a reduced number of super-
configurations. A superconfiguration consists of supershells,
i.e., groups of ordinary orbitals(n, subshells), which are
populated in all possible ways consistent with the Pauli ex-
clusion principle. Average atomic variables(such as energy
and width of the transition arrays, shell occupation, etc.) can
be deduced from the computation of the partition functions
of the supershells.

In the STA method, partition functions are calculated us-
ing recursion relations which can involve alternate summa-
tion of large negative and positive numbers. In case of large
supershells, this results in a strong numerical instability that
can severely limit the range of applicability of the STA
model, in particular, in the low temperature regime. An im-
provement consisting of a recursion relation on ratios of par-
tition functions has been proposed recently[2], but it still
contains alternate summations. In Ref.[2] an approximate
treatment based on a saddle-point technique is proposed
when the numerical instabilities occur.

We propose a stable method to calculate partition func-
tions of superconfigurations without any restriction on ther-
modynamic conditions and on the dimension of the super-
shell. Our method represents a considerable progress for
applications of the STA theory, since it allows one to perform
fast and precise calculations in any case, even for large su-
pershells. The method, based on recursion relations with re-
spect to the number of electrons and the number of orbitals,
is free of the numerical problems encountered with the pre-

vious recursion relations originally proposed. The formalism
introduces a normalization factor in the calculation of parti-
tion functions, and a translation of the energies of orbitals
inside a supershell that arise from a variational principle in a
grand-canonical ensemble.

In Sec. II, the standard methods of calculation of ionic
partition functions are recalled and analyzed. In Sec. III, the
doubly recursive approach is presented, as well as the varia-
tional choice for the scaling of energies and of the normal-
ization factor, which is shown to be consistent with the
zeroth-order saddle-point evaluation of the integral represen-
tation of the partition function.

In Sec. IV, numerical limitations of existing approaches
and of our method are tested by calculating ratios of partition
functions for a large supershell. Examples are shown for a
supershell representing an ion charge. Average populations
of orbitals are also presented and compared with approxi-
mate values.

II. THE PARTITION FUNCTION OF A Q-ELECTRON
SYSTEM

Throughout this paper, emphasis is put on the evaluation
of average ionic variables(such as average population of
orbitals and their variances in each ion), which can be ob-
tained from the partition functions ofisolatedions.

A. Definitions

The partition functionZQ of a canonicalQ-electron en-
semble may be written in the general form as

ZQ = Tr e−bH = o
asQd

kaue−bHual = o
asQd

e−bEa, s1d

wherea runs over all possibleQ-electron quantum states of
total energyEa, H is the Hamiltonian of the system taking
into account all relevant interaction processes, andb
=1/skBTd wherekB is the Boltzmann constant andT the elec-
tron temperature. For numerical reasons due to the evalua-
tion of exponential terms, it is necessary to introduce a free
parameterl in order to scale the energies. Therefore, the
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partition function which is effectively calculated is

UQ = o
asQd

e−bsEa−lQd = eblQZQ, s2d

which is simply proportional toZQ. The introduction ofl is
a Legendre transformation which is similar to the change
from canonical to grand-canonical ensemble, but one has to
keep in mind that the number of electrons in the system is
fixed and therefore the parameterl is not a real chemical
potential with physical meanings.

The simplest approach for atomic-physics calculations of
a many-electron system is the nonrelativistic central-field
model [3]. Any given electron moves independently of the
others in a central potential that represents the electrostatic
field of the nucleus and the spherically averaged mutual Cou-
lomb repulsions of the other electrons. This zeroth-order
Hamiltonian allows one to constructQ-electron wave func-
tions ual from the one-electron spin orbitalsuni,im,i

msi
l in

the form of determinantal functions, whereasEa is simply
the sum of the energies of each electron which do not depend
on magnetic quantum numbersm,i

andmsi
. Therefore, quan-

tum states of the system having the energyEa can be repre-
sented by groups of degeneratedelectron configurationthat
are noted,

sn1,1dp1sn2,2dp2 . . . snN,NdpN with o
i=1

N

pi = Q. s3d

A spin orbital with a givenn, value is simply calledor-
bital, pi is the populationof the ith orbital allowed by the
Pauli exclusion principle and varies from 0 togi =2s2,i +1d,
and N is the number of orbitals. A configuration is com-
pletely defined by the setpW of populations of theN given
orbitals. Now, the partition function in Eq.(2) can be ex-
pressed as a sum over configurational states,

UQ = o
upW u=Q

e−bVspWd, s4d

where the sum runs over allpW configurations containingQ
electrons; this constraint is notedupW u=oi=1

N pi =Q. The func-
tion VspWd is the thermodynamic potential associated to the
electron configurationpW and reads

VspWd = Es0dspWd − TSspWd − lQ. s5d

The total energy of the configuration is defined, in the
zeroth-order central-field approximation, by

Es0dspWd = o
i=1

N

piei , s6d

whereei is the energy of orbitali. The entropy termSspWd is
linked to the total degeneracyWspWd of the configuration by
the formula

SspWd = kB ln WspWd, s7d

with

WspWd = p
i=1

N Sgi

pi
D , s8d

wheres gi

pi
d=gi ! / pi ! sgi −pid! is the binomial coefficient.

The mean Hartree-Fock energy of a configuration can be
obtained by evaluating the nonspherical part of the Hamil-
tonian. The energy of a configuration is then given by

EspWd = o
i=1

N

pikil +
1

2o
i=1

N

o
i8=1

N

pispi8 − di,i8dki,i8l, s9d

where kil and ki , i8l are the one- and two-electron energies
evaluated with basis functions of the central-field Hamil-
tonian. It is possible to calculateUQ with the expression of
the energy of a configuration given by Eq.(9). However, the
quadratic terms with respect to the populations prevent any
factorization of the partition functions, as it will be shown in
the following section.

B. Closed form evaluation using recursion relations

Despite its apparent simplicity, the direct use of Eq.(4),
with or without corrections to the energies due to electro-
static interactions, is often intractable due to the huge num-
ber of configurations to be summed up. As an example, the
number of configurations with 20 electrons distributed
among orbitals 1s to 5g is roughly equal to 0.383109 (see
Sec. III D).

Avoiding a direct calculation of the partition function of a
many-particle system is a classical problem of statistical
physics. The key point is the ability to provide an exact
generating function from which one can derive simple recur-
sion relations. Such closed form formula can be found, usu-
ally, only in noninteracting systems. Indeed, the factorization
of Eq. (4) requires that the energy of a configuration be a
linear function of the populations, as in Eq.(6). We will
adopt this approximation from now. However, it can be noted
that quadratic terms with respect to the populations in Eq.(9)
can be averaged following the procedure described by Bar-
Shalomet al. in Ref. [1]. This allows one to take into ac-
count, approximately, the interaction effects between elec-
trons.

Using classical results from the independent-electron
model [4,5], partition functionUQ can be recursively built
from

UQsbd =
1

Q
o
k=1

Q

s− 1dk+1U1skbdUQ−ksbd, s10d

whereU1sbd is the single-electron partition function defined
by

U1sbd = o
i=1

N

gie
−bsei−ld. s11d

This recursion relation is the central point of the STA ap-
proach, published by Bar-Shalomet al. in Ref. [1], which
allows us to calculate all average variables of the system.
The strength of Eq.(10) stems from the fact that onlyQ
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recursive steps are required in order to evaluate the partition
function of aQ-electron ion, starting fromU0;1 and propa-
gating up toUQ. However, an algorithm based on Eqs.(10)
and(11) is usually numerically unstable without special care
for the exponential terms. Indeed the evaluation of Eq.(11)
may in some cases exceed the precision of the processor
(“overflow”) or rapidly decrease to zero(“underflow”), re-
sulting in a dramatic loss of precision. The situation may get
worse if one has in Eq.(10) an alternate summation of large
positive and negative terms. These problems can be avoided
by requiring that the maximum value of the argument of
exponential terms be of the order of unity,

uei − luQ & kBT ∀ i P f1,Ng. s12d

This set of inequalities defines, roughly, the domain of sta-
bility of Eq. (10). Therefore, we see that the introduction of
the free parameterl is essential since it can be adjusted in
order to reach a numerical stability. As will be shown further,
an optimal value of the parameterl can be chosen according
to a simple variational principle. Moreover, the stability of
relation (10) can be severely limited if the number of elec-
tronsQ in the system is too high.

Blenski et al. have proposed in Ref.[6] to apply Eq.(10)
for the “holes”(complement of the electrons) when the num-
ber of electrons is bigger thanG/2, G being the total degen-
eracy of a supershell(summation of degeneracies of all or-
bitals). The use ofelectron-hole formalism presents two
main advantages. First of all, numerical instabilities are con-
siderably reduced, because when values ofUQ−k become
huge(i.e., whenk is close toG/2), one prefers reasoning on
holes rather than electrons which allows us to deal with rea-
sonably large numbers. The second advantage of this method
is that it allows a reduction in calculation time. This can be
explained by the fact that calculation time grows withk and
becomes particularly important neark=G/2.

Wilson and Chen proposed recently[2] to reformulate Eq.
(10) into a recursion relation over ratios of consecutive par-
tition functions

QRQsbd
R1sbd

= 1 +o
i=2

Q

s− 1di−1p
k=1

i−1 R1ssk + 1dbd
R1skbd

1

RQ−ksbd
,

s13d

whereRQsbd is defined by

RQsbd =
UQsbd

UQ−1sbd
, s14d

and is initialized with the conditionR1=U1 [see Eq.(11)].
There are many good reasons to calculate ratios of partition
functions. First, this latter quantity appears explicitly in the
expression of average variables(see Sec. IV B for the aver-
age level population). Then, it is a way to compensate the
large values of the partition functions, and to handle more
“reasonable” numbers. Although recursion relation(13) is a
little more robust than relation(10), it does not solve the
problem of alternate sums.

One of the consequences of criterion(12) is the impossi-
bility to perform statistical calculations on a set of orbitals
for which energies are spread out on a scale larger than
,kBT. Moreover, the condition becomes extremely severe as
the temperature decreases, and this explains the difficulties to
perform STA calculations at low temperatures. In the follow-
ing section, we present an approach allowing to encompass
these limitations.

III. A DIRECT AND STABLE APPROACH TO CALCULATE
THE PARTITION FUNCTION

A. Derivation of a recursion relation

Numerical errors due to the summation of alternate-sign
numbers is one of the major source of instability in the re-
cursion relations(10) and(13). These problems appear when
the consecutive terms in the recursion relation become com-
parable to round-off errors. A good way to eliminate this
problem is to derive a recursion relation that consists in add-
ing only positive numbers. For that purpose, we have derived
a recursion relation with respect to the number of electrons
and orbitals in the system. The derivation of this recursion
relation is now detailed.

The constraintupW u=Q in Eq. (4) can be removed if, at the
same time, the following identity[8] is inserted in the rela-
tion

d0,L =
1

2ip
E

−ip+a0

ip+a0

dtetL, s15d

whereL=Q− upW u and a0 is an arbitrary real parameter. This
allows us to factorize Eq.(4) in the form

UQ =
1

2ip
E

−ip+a0

ip+a0

dtetQp
s=1

N

o
ps=0

gs Sgs

ps
DsXse

−tdps, s16d

using the notationXs=e−bses−ld. By settingz=e−t, the integra-
tion in the complex plane is performed around a closed circle
of radiuse−a0, surrounding the pole atz=0. The last expres-
sion becomes

UQ =
1

2ip
rdz

Fszd
zQ+1 , s17d

whereFszd is defined by

Fszd = p
s=1

N

o
ps=0

gs Sgs

ps
DszXsdps s18d

=p
s=1

N

s1 + zXsdgs. s19d

Expression(17) is calculated using the Cauchy formula, by
evaluating the residue of the functionFszd /zQ+1 at the pole
z=0 of orderQ+1,
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UQ = ResFFszd
zQ+1 ;0G = lim

z→0
F 1

Q!

]Q

] zQFszdG . s20d

The partition functionUQ of a non-interactingQ-electron
system is thus obtained by successive derivations of the
functionz°Fszd, which is called thegenerating function. A
recursion relation can be found by searching relationships
between two consecutive derivatives of the functionFszd. A
recursive formula over the number of electronsQ of the
system has already been established[1] and presented in
Sec. II B.

The speciality, here, consists in the derivation of a recur-
sion relation over the number of electronsQ and over the
number of orbitalsN of the system. This can be done starting
from the usual generating functionFszd of the system, and
considering it as an explicit function of the number of orbit-
als. Therefore, we define one generating functionFNszd for
each possible value of the number of orbitals, and we intro-
duce the notationUQ;N which refers to the partition function
of Q electrons distributed amongN given orbitals. Using the
multiple derivative formula of Leibnitz,

]Q

] zQfABg = o
i=0

Q SQ

i
DF ]Q−i

] zQ−i AGF ]i

] zi BG , s21d

we can write

UQ;N = lim
z→0

1

Q!

]Q

] zQfFN−1szds1 + zXNdgNg

=o
i=0

Q SQ

i
D sQ − id!

Q!
UQ−i;N−1lim

z→0
F ]i

] zi s1 + zXNdgNG .

s22d

The derivative of the polynomial function in the square
brackets can be easily calculated by

]i

] zi s1 + zXNdgN = XN
i s1 + zXNdgN−i gN!

sgN − id!
QsgN − id.

s23d

The Heaviside functionQsgN− id ensures that theith deriva-
tive is null in the case wherei is greater than the ordergN of
the polynomial. Evaluation of the last expression in the limit
z→0, and the substitution of the result in Eq.(22) leads to

UQ;N = o
i=0

Q SQ

i
D sQ − id!

Q!
UQ−i;N−1XN

i gN!

sgN − id!
QsgN − id.

s24d

The factorial numbers can be simplified and arranged in a
single-binomial coefficient. Thus, the final expression for the
recursion relation over the number of electrons and over the
number of orbitals of the system reads

UQ;N = o
i=0

Q

UQ−i;N−1XN
i SgN

i
DQsgN − id, s25d

and is initialized withUQ;0=dQ;0.
Generalizing this result, the partition functionUt;k of t

electrons distributed amongk orbitals can be obtained from a
recursion formula which reads, in compact form,

Ut;k = o
pk=0

minst,gkd

Ut−pk;k−1e
−bVkspkd, s26d

where we define

Vkspkd = pksek − ld −
1

b
lnSgk

pk
D . s27d

One may note that in Eq.(26) the terms have been gathered
in the argument of a single-exponential term in order to pre-
vent numerical imprecisions due to multiplication of a large
binomial coefficient by a small exponential term. The proce-
dure used to calculate the partition function ofQ electrons in
an N-orbitals system is as follows. Starting withUt;0=dt;0,
Eq. (26) is applied in order to determine theQ possible val-
ues of the partition functionsUt;1s1ø tøQd for a chosen
orbital. The results are used to build the nextQ valuesUt;2
that take into account one additional orbital, and so on. The
expected valueUQ;N is obtained at iterationN, i.e., when all
orbitals have been taken into account. Therefore, the parti-
tion function is obtained in a maximum ofNQ steps, i.e.,N
times more than the recursion relations(10) and (13). This
additional numerical cost remains very reasonable compared
to the enhanced precision of the method. The most interest-
ing property of this recursion relation is that the contribution
of each orbital to the total partition function has been sepa-
rated from the others in successive steps. This becomes more
evident if the relation is compared to the direct expression of
the partition functions given by Eq.(4), and noting that

VspWd = o
k=1

N

Vkspkd. s28d

The recursion relation given by Eq.(26) can be considered as
a direct approach to calculate the partition function because
the Vkspkd functions are components of the thermodynamic
potential VspWd, whereas the entropy term apparent in Eq.
(27) is hidden by mathematical complexity in Eqs.(10) and
(13). This particularity can be used to introduce a shift to the
thermodynamic potential and thus normalize the partition
functions, as we will see in the following section. In the
practical implementation, the precision of the relation(26)
depends critically on the choice of the free parameterl
whose role is tominimizethe values ofVkspkd in order to
prevent numerical problems due to the evaluation of expo-
nential terms. Thus, we see that an optimal value ofl can be
found from a variational principle applied to the potential
VspWd. This point will be also detailed in the following sec-
tion.
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B. Normalization of partition functions by variational
considerations

When the orbitals of the system have too different ener-
gies (separated by more thankBT), the Vkspkd functions can
take significant values, whatever the choice ofl may be. In
that situation, numerical problems of overflow or underflow
of exponentials appear inevitably in Eq.(26). A way to avoid
these problems consists innormalizingthe partition function
UQ. The basic idea is to factorize the dominant exponential
term in Eq. (4), this term being associated to a particular
configurationpW * of the system, and to evaluate the normal-
ized partition functionVQ with

VQ;N =
UQ;N

e−bVspW* d
= o

upW u=Q

e−bfVspWd−VspW* dg. s29d

ConfigurationpW * , which represents the most probable elec-
tronic configuration of the system, can be obtained through
variational considerations. The search for extrema leads one
to impose the condition

¹W VspW *d = 0W ⇒
] Vk

] pk
spk

*d = 0 ∀ k P f1,Ng. s30d

The resolution of the system of Eq.(30) is performed by
approximating binomial coefficients with Stirling formula.
As a result,pW * involves the well-known Fermi-Dirac distri-
bution,

pk
* =

gk

1 + ebsek−lQd ∀ k P f1,Ng, s31d

where Lagrange multiplierlQ is adjusted in order to ensure
preservation of the number of electrons in the system,

o
k=1

N

pk
* = Q. s32d

In this way, we find the optimal valuel;lQ, which has
been introduced as a free parameter in this paper. It is inter-
esting to mention that Blenskiet al. in Ref. [7] used the same
Eq. (31) in their superconfiguration code in order to calculate
the average populations of the orbitals inside a supershell
made ofQ electrons.

The introduction of the normalization factor into the re-
cursion relation(26) can be done by using Eq.(28) for pW * .
The recursion relation can be therefore written as

Ṽt;k = o
pk=0

minst,gkd

Ṽt−pk;k−1e
−bDṼkspkd, s33d

with

DṼkspkd = Ṽkspkd − Ṽkspk
*d

=sek − lQdspk − pk
*d −

1

b
FlnSgk

pk
D − lnSgk

pk
* DG .

s34d

The symbol̃ reminds one that the corresponding variable is

implicitly evaluated by takingl=lQ. The numerical stability
and accuracy of Eq. (33) relies on the property
DṼkspkd.0 ∀ k, which eliminates overflow problems in the
evaluation of exponential terms, and, at the same time, al-
lows one to take correctly into account numerical underflow
of exponentials corresponding to configurations with a very
low probability. Moreover, the fact that the partition func-
tions are normalized, i.e.,ṼQ;N<1, allows one to calculate
ratios of the formṼQ;N/ ṼQ−1;N with a high accuracy.

We note that the resolution of Eq.(30) provides a con-
figurationpW * with fractional populations. However, an accu-
rate value ofVspW *d is not necessary since it is used only in
order to prevent the divergence of exponential terms. There-
fore, it is possible to retain the closest integer populations to
this solution for the practical implementation. Nevertheless,
the advantage in using the fractional populations is the con-
sistency with the zeroth-order saddle-point evaluation of the
integral representation of the partition function. This point is
discussed in the following section.

C. Equivalence between variational normalization coefficient
and saddle-point approximation

It has been shown that the partition functionZQ;N of a
noninteractingQ-electron system withN orbitals can be
evaluated more easily with the change of variables,

ZQ;N = ŨQ;Ne−blQQ = ṼQ;Ne−bfVspW* d+lQQg, s35d

whereṼQ;N is evaluated from recursive Equation(33), VspW *d
is the normalization coefficient, andlQ is the translation of
energies obtained from a variational principle. It is interest-
ing to stress the link between this change of variables and the
continuous representation of the partition function[8], which
can be expressed, using Eqs.(16) and (35),

ZQ;N =
b

2ip
E

ip/b+a08

ip/b+a08
e−bzsuddu, s36d

with

zsud = −
1

b
o
i=1

N

gi lnf1 + Yie
bug + uQ, s37d

where Yi =e−bei and a08 is an arbitrary real parameter. The
saddle pointn is obtained by a minimization of the function
u°zsud on the real axis,

Udzsud
du

U
n

= 0 = −o
i=1

N

gi
Yie

bn

1 + Yie
bn + Q. s38d

Therefore,n is the root of

o
i=1

N

p̃i = Q with p̃i = gi
Yie

bn

1 + Yie
bn =

gi

1 + ebsei−nd , s39d

which implies, comparing Eq.(39) with Eq. (31), that n

=lQ and thatp̃W =pW * . Moreover, it can be proven that

STABLE METHOD FOR THE CALCULATION OF… PHYSICAL REVIEW E 69, 056117(2004)

056117-5



− bzsnd = o
i=1

N

sgi lnf1 + Yie
bng − bnp̃id=o

i=1

N

lnFSgi

pi
* DYi

pi
*G

= − bfVspWd + lQQg, s40d

assuming Stirling approximation for the binomial coefficient.
Since the partition function is equal, in the zeroth-order ap-
proximation, toZQ;N

s0d =e−bzsnd, we can write

ZQ;N
s0d = e−bzsnd = p

i=1

N Sgi

pi
* DYi

pi
*

= e−bfVspW* d+lQQg. s41d

The comparison of Eqs.(41) and(35) shows that the nor-
malization factor, introduced by variational considerations in
the preceding section, is strictly equal to the zeroth-order
saddle-point evaluation of the integral representation of the
partition function. The change of variable can be rewritten as

ZQ;N = ZQ;N
s0d ṼQ;N. s42d

This means that the normalized partition functionṼQ;N rep-
resents the exact value of the neglected terms(orderù2) in
the development of the continuous representation of the par-
tition function. The first-order correction being equal to zero
[Eq. (38)], ṼQ;N can be estimated in the second-order ap-
proximation by

ṼQ;N =
1

G
E

0

G

e−t2dt + oslQ
3 d, s43d

whereG=pÎ−z9slQd /2b. The consistency of the recursion
relation on normalized partition functions with the approxi-
mate saddle-point approach is interesting since it allows us to
develop a fast optimized algorithm that selects the appropri-
ate method, according to the number of electrons in the sys-
tem. Indeed, the second-order saddle-point approximation
appears to be accurate for highly degenerated and half-filled
system. We note that a similar hybrid algorithm, between
exact and approximate calculations, has also been proposed
by Wilson and Chen in Ref.[2].

D. Applications to statistical counting

An additional possibility of the recursion relation is to
provide, with slight modifications, a fast and exact method to
count the number of configurations and nondegenerated
states(number of basis functions of the Hamiltonian) in a
given ion.

The number of nondegenerated states of the system can
be formally evaluated from the expression

WQ;N = o
upW u=Q

WspWd= o
upW u=Q

p
k=1

N Sgk

pk
D . s44d

It appears thatWQ;N is the high temperature limitb→0 of
the partition function of the system. Therefore, it is easy to
show that the relevant generating functionz°GNszd is equal
to

GNszd = p
s=1

N

s1 + zdgs, s45d

from which is derived

WQ;N = o
i=0

minsQ,gNd SgN

i
DWQ−i;N−1, sWQ;0 = dQ;0d. s46d

The exact number of possibilities to distributeQ electrons
in N orbitals(i.e., the number ofconfigurationsif all orbitals
are gathered in one single supershell) reads

NQ;N = o
upW u=Q

1. s47d

From a derivation similar to the one presented in Sec. III A,
it can be shown that the relevant generating function
z°HNszd is

HNszd = p
s=1

N
1 − zgs+1

1 − z
, s48d

leading to the recursion relation

NQ;N = o
i=0

minsQ,gNd

NQ−i;N−1, sNQ;0 = dQ;0d. s49d

This formula can be applied, more generally, when the orbit-
als are gathered in more than one supershell, and therefore
when each ion can be represented by many superconfigura-
tions. For example, considering a superconfigurationJ com-
posed of many supershellss containingQs electrons andNs

orbitals, the total number of configurations is given byNJ

=psNQs;Ns
, and the total number of nondegenerated states is

simply WJ=psWQs;Ns
.

A numerical example, in which the number of configura-
tions and the number of nondegenerated states are calculated
exactly through Eqs.(46) and (49), is presented in Table I
versus the number of electrons distributed in one single su-
pershell containing orbitals from 1s to 5g.

Another interesting quantity that can be easily and pre-
cisely obtained from our approach is the number of pairs of
configurations connected by a given one-electron transition

TABLE I. Number of configurations and number of nondegen-
erated states calculated with Eqs.(49) and(46) for different values
of the number of electrons distributed in orbitals 1s to 5g.

Q NQ WQ

1 15 110

5 11028 0.122391523109

10 1407606 0.4689763731014

15 35997772 0.1175759831019

20 0.377006113109 0.4393971531022

25 0.2199713831010 0.3634704231025

30 0.8407657031010 0.8366230931027

35 0.2313551531011 0.6195455931029
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between two superconfigurations. Considering two orbitalsa
and b for an ion containingQ electrons andN orbitals, the
number of transitionsa→b is given by[8]

T Q;N
a→b = NQ−1;Nsabd, s50d

where notationNsabgd. . .d [1] represents a set ofN orbitals
where degeneracies of orbitalsa ,b ,g ,d , . . . areequal toga

−1, gb−1, gg−1, gd−1, etc. Indeed, the transition will be
possible only if there is a vacancy(or hole) in orbital b, and
the electron involved in the transition will leave a vacancy in
orbital a. Thus, the number of transitions is equal to the
number of configurations ofQ−1 electrons amongN orbit-
als, degeneracies of both involved orbitals being diminished
by one. In the superconfiguration approximation, ifa be-
longs to supershell 1 havingQ1 electrons andN1 orbitals and
b to supershell 2 havingQ2 electrons andN2 orbitals, the
number of transitionsa→b is given by

T Q;N
a→b = NQ1−1;N1

sadNQ2−1;N2
sbd, s51d

whereN=N1+N2 andQ=Q1+Q2.

IV. NUMERICAL RESULTS

A. Ratios of partition functions

In Sec. II B, it was shown that the accuracy of Eqs.(10)
and(13), called here standard approaches for the calculations
of partition functions, are considerably limited by the sum-
mation of alternate-sign numbers. This can be emphasized by
comparing the results from these numerical methods with
results from our recursion relation(26) with respect to the
number of electrons and orbitals of a supershell. The study is
limited to one supershell made of six orbitals
s4p4d4f5s5p5dd, with a number of electrons varying from 0
to the total degeneracy 48. For numerical convenience(the
purpose is only to check the stability of the recursion rela-
tions), the energies of the orbitals for all possible configura-
tions are “frozen” to the average-atom values calculated from
a screened hydrogenic model withnl-splitting [9]. The ex-
ample corresponds to a gold plasma at a temperature of
100 eV and a density of 0.01 g/cc, the energies of the orbit-
als being specified in Table II. According to the qualitative
criterion defined by Eq.(12), this case is numerically un-
stable for standard approaches since the difference of energy
between orbitals 4p and 5d is much greater than the tempera-
ture: ue4p−e5du=8.37kBT.

This can be checked in Figs. 1 and 2, where ratios of
consecutive partition functions, i.e.,UQ;N/UQ−1;N, are plotted
versus the number of electrons in the supershell. Results
from standard approaches are compared with results obtained
with the recursion relation in the simplest formulation[Eq.
(26)] that does not take into account the normalization of the
partition functions. In Fig. 1, partition functions are calcu-
lated separately from the recursion relation of Bar-Shalomet
al. in Ref. [1], i.e., by using Eq.(10) in electron counting and
its equivalent expression in hole counting[6]; the ratios are
obtained thereafter. The ratios in Fig. 2 are calculated di-
rectly from the recursion relation of Wilson and Chen in Ref.
[2], expressed by Eq.(13) in electron counting, and a similar

expression in hole counting. All calculations were performed
by setting the parameterl equal to −32.833. Standard calcu-
lations are known to be correct for a small number of elec-
trons or holes and to show a breakdown in accuracy near half
occupancy of the supershell(which prevents the use of the
recursion relations for a large number of electrons or holes).
This can be observed in Figs. 1 and 2, where ratios of parti-
tion functions for 20øQø23 are not accurately reproduced
by these approaches, neither in electron counting nor in hole
counting. Indeed, near half-filled supershells contain con-
figurations with a high degeneracy. Therefore, the calculation
of the partition function involves an alternate summation
oflarge numbers, which leads to cancellation errors as ex-
plained in Sec. III A. These numerical problems can be fixed
by a multiprecision arithmetic calculation[2], but the nu-
merical cost is definitely prohibitive. On the contrary, the
recursion relation(26) is applied with single-precision arith-
metic and provides correct ratios of partition functions for all
Q in electron counting, as well as in hole counting. This
demonstrates that the summation of alternate-sign numbers,
intrinsic property of the standard recursion relations, can
have a dramatic impact on the accuracy of partition func-
tions, and that the resulting error cannot be everywhere com-
pensated by hole counting.

B. Average populations and their variances

We have shown that the recursion relation(26) can be
improved, with a proper normalization of the partition func-

TABLE II. Screened hydrogenic average-atom energies[9] of
orbitals 1s to 6h for a gold plasma,T=100 eV,r=0.01 g/cc, and
Z* =26.02sm=−32.833 a.u.d.

Orbital Degeneracy Energy(a.u.)

1s 2 −0.2740513104

2s 2 −0.4842833103

2p 6 −0.4733513103

3s 2 −0.1379633103

3p 6 −0.1323043103

3d 10 −0.1205873103

4s 2 −0.5428323102

4p 6 −0.5001203102

4d 10 −0.4256473102

4f 14 −0.3201023102

5s 2 −0.2406963102

5p 6 −0.2314693102

5d 10 −0.1924393102

5f 14 −0.1523503102

5g 18 −0.1489243102

6s 2 −0.1050123102

6p 6 −0.1038233102

6d 10 −0.9843523101

6f 14 −0.9649023101

6g 18 −0.9568943101

6h 22 −0.9549933101
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tion, in order to treat arbitrarily defined supershells without
any limitations on the number of orbitals and on the values
of their energies. This allows one to perform very accurate
statistical calculations on large thermodynamic ensembles.
To illustrate this possibility, the formalism was applied to the
evaluation of average properties of ions where all the elec-
trons are distributed in a single supershell containing all the
orbitals of Table II. The difficulty of this case is apparent
since the difference of energy between orbitals 1s and 6h is
ue1s−e6hu=743.14kBT, which is enormous in terms of tem-
perature. We put the focus on the evaluation of the average
population of orbitals and their standard deviation.

The average population of orbitalk in theQ-electron ion,
noted kpklQ, can be expressed in the form of a generalized
Fermi-Dirac distribution[2,6]

kpklQ =
gk

1 +
ZQ;Nskd

ZQ−1;Nskd
ebek

=
gk

1 +
ṼQ;Nskd

ṼQ−1;Nskd

ebsek−lQd

. s52d

We note that the restriction of averaging the populations over
Q-electron configurations introduces an additional factor in
the usual Fermi-Dirac expression, which is the ratio of the
partition functions corresponding to two ions of consecutive
charges, evaluated for degeneracy of the involved orbital di-
minished by one unit. This change of degeneracy, applied to
the orbitalk, is symbolized by the notationNskd. If this re-
striction is removed, which means that the average is per-
formed over allQ-electron configurations, the average popu-
lation is given by Eq.(31). It is important to mention that the

FIG. 1. Ratios of partition function
UQ;N/UQ−1;N, vs number of electrons in the super-
shell s4p4d4f5s5p5dd. The case is specified in
Table II. Results obtained from the recursion re-
lation of Bar-Shalomet al. in Ref. [1] applied in
electron countingsPd and in hole countingssd
[6] are compared to the results obtained with the
recursion relation(26) applied in electron count-
ing only snd.

FIG. 2. Same as Fig. 1. Results obtained from
the recursion relation of Wilson and Chen in Ref.
[2] applied in electron countingsPd and in hole
counting ssd are compared to the calculations
performed with the recursion relation(26) ap-
plied in hole counting onlys,d.
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average population determined by Eq.(52) is independent of
lQ, because ratios of normalized partition functions
ṼQ;Nskd / ṼQ−1;Nskd are proportional toeblQ by construction[see
Eq. (35)].

The average occupation numbers(the population divided
by its degeneracy) of several orbitals are displayed in Fig. 3
as a function of the number of electrons in the supershell.
The values were obtained by using the following procedure.
For a given value ofQ, the populationspW * and the Lagrange
multiplier lQ associated to the conservation of the number of
bound electrons of the ion are evaluated through Eq.(31).
These quantities are part of the normalization coefficient of
the approach. Then, for each orbitalk, we apply the recursion
relation[Eq. (33)], taking into account the change of degen-

eracy of the involved orbital, to calculate the normalized
partition functionsṼQ;Nskd and ṼQ−1;Nskd. The ratio of both
values are then used in Eq.(52) to determine the average
population of the orbitalk in the Q-electron ion.

It is interesting to see the difference between average
populations of aQ-electron ion,kpklQ, and the valuespk

* (31)
used by Blenskiet al. in Ref. [7].

The relative difference,pk
* −kpklQ/ kpklQ, is plotted in Fig.

4 for several orbitals. The difference was considered to be
zero in the case whereupk

* −kpklQukpklQø10−6. Significant
discrepancies between both averaging methods are observed
in some range of supershell population. As we can see, per-
forming the average with Eq.(31) leads to an overestimate of
the 2p population up to 50% and the 3d orbital around 20%.

FIG. 3. Each ion is represented by one super-
configuration made of one supershell containing
all n, orbitals of Table II. The recursion relation
on normalized partition functions(33) is used to
calculate the average occupation number(popu-
lation divided by degeneracy) of these orbitals in
each ion.

FIG. 4. For the case from Table II, the relative
error of two methods of calculating the average
occupation numbers of orbitals[Eqs. (52) and
(31)] is estimated vs the number of electrons.
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The differences observed for the other orbitals are close to
10%, and become negligible when the number of electrons
becomes large.

The other interesting quantity that can be studied is the
second-order moment

kpk
2lQ = kpklQ31 +

gk − 1

1 +
ṼQ;Nskkd

ṼQ−1;Nskkd

ebsek−lQd4 . s53d

The ratio of partition functions of two consecutive ions,
which appears in the last formula, must be evaluated by re-
ducing the degeneracy of the orbitalk of interest by two; this
is noted Nskkd. The variance of population inside the
Q-electron ion is therefore defined bysk,Q

2 =kpk
2lQ−kpklQ

2 ,
wheresk,Q is the standard deviation of the population. The
variation of this last quantity is displayed in Fig. 5 as a
function of supershell population for orbitals 2s to 4f. An

estimation of the variance can be obtained by the standard
formula

sk
2 = pk

*S1 −
pk

*

gk
D . s54d

It can be derived by substituting the ratios of partition func-
tions by one in Eqs.(52) and(53), which leads to the change
kpklQ→pk

* and sk,Q→sk. Numerical results of Eq.(54) for
the same case is presented in Fig. 6. Strong discrepancies are
observed between both averaging methods.

V. CONCLUSION

A numerical method for the calculation of partition func-
tions of Q-electron ions and their average thermodynamic
quantities was presented. It consists of a recursion relation
with respect to both the number of electrons and the number
of orbitals. This recursion relation does not contain any al-

FIG. 5. The standard deviation of orbital oc-
cupation is calculated with the model as a func-
tion of the number of electrons in each ion. The
case is specified in Table II.

FIG. 6. Same as Fig. 5, but the standard de-
viation of orbital occupation is evaluated through
Eq. (54).
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ternate summation, which permits one to avoid numerical
difficulties due to the substraction of large numbers that may
appear in the formula of Bar-Shalomet al. in Ref. [1].

The precision and stability of the method is considerably
improved by the introduction of a translation of the energies
for the orbitals inside a supershell and of a normalization of
partition functions consistent with the continuous zeroth-
order saddle-point approximation.

This method brings a considerable improvement to the
STA method, since it allows accurate calculations of partition
functions, even in the case of large supershells. Indeed, it
permits to initialize the superconfiguration calculations with
a single superconfiguration for each ion charge state, prepar-
ing further refinement of the supershell dimensions. More-
over, it is important to mention that calculation time remains
reasonable.

Thus, this numerical method is interesting for all codes
relying on the superconfiguration approximation in local
thermodynamic equilibrium(LTE) [1,6] as well as non-LTE
conditions[10–12], provided in the latter case that local ther-
modynamic equilibrium is approached inside a supershell.
Furthermore, this method can also be generalized to the case
where one deals with holes rather than with electrons. How-
ever, contrary to existing approaches, such a procedure is not

necessary in the recursion relation, but still allows one to
divide calculation time by a factor close to 2.

Furthermore, this recursion relation can be adapted in or-
der to obtain a recursion relation for different statistical
quantities(such as the total number of nondegenerated states,
the number of configurations gathered in a superconfigura-
tion, or the number of transitions between two superconfigu-
rations). It is important to mention that the approximation of
a partition function by an integral evaluated through the
saddle-point technique appears to be precise in the case
where the number of electrons is close to half the degen-
eracy. One can therefore establish a criterion that would al-
low one to determine the best method for the calculation of
partition functions, in order to find the best compromise be-
tween precision and calculation time. It is important to have
a strong and fast method of calculation because the number
of quantities to be determined in a photoabsorption cross-
section calculation code can be tremendous.
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